

Fuels, Energy & Thermal Systems Research Laboratory

Rizalinda de Leon Angela Escoto Kristian July Yap

Academics & Research Services

http://www.upd.edu.ph

http://www.coe.upd.edu.ph

Department of Chemical Engineering

Fuels, Energy and Thermal Systems Research Laboratory

Research

Fuels

Energy Systems

Thermal Systems

Fuels: Sources & Products

Microalgae → Biodiesel/HVP

- C. Vulgaris
- Nannochloropsis sp.

Water & Light

→ Hydrogen

- Distilled water
- *Sea water* 7/11/2016

Lignocellulose/
Cellulose →
Bioethanol/ Crude
Oil/HVP

- Bagasse
- Rice Straw
- Napier and other Grasses
- Macroalgae

- Peptone
- Antimelanogenic
- Antimicrobial
- Pectin

Fuels: Process

Microalgae

 Effect of Cultivation Parameters on Lipid yields and profiles

Water & Light

- Photocatalyst Synthesis
- Effect of ions and int

Lignocellulose/ Cellulose

- Pretreatment
- Consolidated
 Bioprocessing
- Hydrothermal Treatment
- Torrefaction

Equipment (Fuels)

Microalgae

 Cultivation cabinet with CO2 bubbling

Water & Light

- GC TCD
- Sunlight Simulation Chamber
- Photocatalytic Reactor

<u>Lignocellulose/</u> <u>Cellulose</u>

- Mini hydrothermal reactors
- Sandbath
- Torrefaction reactor
- Incubators/Refrigerator
- HPLC
- Pressure Cookers (autoclaves)

Past Research on Products from Lignocellulosic

- Myra Borines, Bioethanol from Macroalgae (Seaweed)
- Le Duy Khuong, Bioethanol via Consolidated Bioprocessing from Sugarcane Bagasse
- Le Duy Khuong, Bioactivity of the extracts from sodium hydroxide pretreatment waste water with antimelanoma inhibitory and anti-bacterial activity
- Le Duy Khuong, Crysophanol and pachybasin, two anthraquinone derivatives with melanin biosyntheis inhibitory activity from sugarcane bagasse

Consolidated Bio Processing (CBP)

BIOETHANOL

BIOETHANOL Raw Materials

LIGNOCELLULOSE

Rice Straw

Corn Stover

Sweet Sorghum

Sugarcane Bagasse

PRETREATMENT

PHYSICAL

BIOLOGICAL

CHEMICAL

COMBINED

CONSOLIDATED BIOPROCESSING

CBP

Saccharomyces cerevisiae

Neurospora crassa

Fusarium oxysporum

Fusarium moniliforme

HIGH-SOLIDS PROCESSING

Lignocellulose Fuels: Current Thrust

 Screening of Filamentous Fungi for ability to ferment cellulose to ethanol

18

BIOETHANOL PRODUCTION VIA CONSOLIDATED BIOPROCESSING UNDER HIGH SOLIDS CONDITIONS OF ALKALI-PRETREATED RICE STRAW USING Fusarium maniliforme

Almajoy P. Ilao John Steven M. Magboo

Ariel Kaye V. Kica

Rizalinda L. de Leon Adviser and Head, FETS Laboratory

METHODOLOGY: PRETREATMENT

Rice Straw

Oven drying @ 70°C

Size reduction to Mesh 20-80 Soxhlet extraction for 16 h

Extractives-free Biomass

METHODOLOGY: PRETREATMENT

Extractives-free Biomass (200 g)

Treatment w/ 400 mL 0.1 M NaOH, 120°C, 1 h

Filtration & washing t pH 6.5 Drying to constant weight

Alkali-pretreated biomass

METHODOLOGY: CULTURE PREPARATION

10 mL Mandel's media

Component	Amount (g/L)	
Glucose	10	
Yeast Extract	5	
KH ₂ PO ₄	10	
Mg₂SO₄·7H₂O	0.5	
CaCl ₂ ·2H ₂ O	0.5	
Fe ₂ SO ₄ ·H ₂ O	0.005	
CoCl ₂ ⋅6H ₂ O	0.005	
ZnSO₄·7H2O	0.005	
CuSO ₄	0.005	
MnSO ₄	0.005	
Tween 80	1	
Resazurin indicator	0.01	

METHODOLOGY: FERMENTATION

METHODOLOGY: ANALYSIS

SUMMARY OF RESULTS

Change in Composition of Extractives-free Rice Straw before and after Alkali-Pretreament

	Cellulose (%)	Hemicellulose (%)	Lignin (%)
Treatment with 0.1 MNaOH	33.60 ± 4.58	13.83 ± 0.02	15.37 ± 4.41
Untreated	27.58 ± 1.49	10.89 ± 2.51	19.47 ± 1.53

SUMMARY OF RESULTS

Relative humidity in the 125-mL flask space at various fermentation times:

SUMMARY OF RESULTS

HPLC Chromatogram for Ethanol analysis at Day 25:

SUMMARY OF RESULTS

Ethanol production by *F. moniliforme* terminated at different fermentation times.

SUMMARY OF RESULTS

HPLC Chromatogram for Carbohydrate analysis at Day 20:

SUMMARY OF RESULTS

Change in biomass composition during fermentation:

CONCLUSIONS

- The filamentous fungus *Fusarium moniliforme* is able to produce bioethanol via consolidated bioprocessing from alkali-pretreated rice straw under solid-state fermentation.
- A maximum ethanol concentration of 5.37 g/L was obtained after 17 days, corresponding to a yield of 26.4 mg ethanol per gram of substrate.
- A decrease in both cellulose and hemicellulose content was observed during the 25-day fermentation.
- Fusarium moniliforme is able to ferment both pentose and hexose sugars.

Looking Forward

- Bioreactor Design: e.g. Oscillatory Baffled Reactor (good mixing, low shear, increased mass transfer, linear and predictable scale-up, continuous operation under plug flow conditions)
- Intermittent Feeding

Fuels, Energy & Thermal Systems Laboratory

http://dche.coe.upd.edu.ph/researchgroups/fuels-energy-and-thermal-systemslaboratory/

rizalinda.deleon@coe.upd.edu.ph

Suggestions

- Determine changes in protein concentration with time (to follow biomass growth)
- Carbon-balance to determine how much was consumed for biomass production
- Determine enzyme activity
- Composition of Medium concocted based on requirements per sub-process
- Screening (glucose) greater than theoretical 10 g glucose/L.
- Do you think there might be ethanol inhibition? Do you know tolerance?
- What other components produced? Enzymes? Proteins? Xylitol? Organic acids?
- Viability of the strain? Molecules that could inhibit the growth and the ethanol production?