Bioprocess intensification: Challenges related to transfer limitation 2nd workshop at CRDB/SBFT-HUST (Hanoi, VN) 27-30th June 2016

INVESTIGATION OF PHYSICAL MECHANISMS DURING DECONSTRUCTION OF PRETREATED LIGNOCELLULOSIC MATRIXES: FROM PURE **ENZYMATIC ACTIVITY TO COCKTAIL**

PHD STUDENT

ET DES PROCÉDÉS

HTMS BioAsie● Page 2

Scientific CONTEXT

Enzymatic hydrolysis of lignocellulosic biomass

BIBLIOGRAPHIC review

Physical approach on enzymatic hydrolysis

Physical approach

- Properties of lignocellulosic fiber suspension (yield stress, rheological behavior, particle size and morphology)
- Evolution of fiber properties during enzymatic hydrolysis

Knowledge

-Lignocellulosic suspension possess shear thinning properties (non-Newtonian fluids which have decreased viscosity when subjected to shear strain)

μ, P = f (solid loading): 4% increase in solid content lead to 5 folds rise in power consumption (Fan et al., 2003; Dunaway et al. 2010; Knutsen et al. 2012)

 μ = f (particle size) : at 10% w/w, 50 folds rise in viscosity from particle size 33-75 μ m up to 150-180 μ m (Dasari and Berson 2007)

Role of **single activities** in the liquefaction : endo-glucanase =dominant (Szijártó et al., 2011)

HTMS BioAsie • Page 4

BIBLIOGRAPHIC review

Physical approach on enzymatic hydrolysis

Physical approach

- Properties of lignocellulosic fiber suspension (yield stress, rheological behavior, particle size and morphology)

Knowledge

-Lignocellulosic suspension possess **shear** thinning properties (non-Newtonian fluids which have decreased viscosity when subjected to shear strain)

μ, P = f (solid loading): 4% increase in solid content lead to 5 folds rise in power consumption (Fan et al., 2003)

Lack in knowledge

Investigation of pure up to cocktail activities by physical approach: insitu viscosity, mechanisms of degradation.

→ My PhD

HTMS BioAsie• Page 5

Substrate & Experiment parameters

Substrate

Sugarcane bagasse: from sugar factory Nong Cong and Lam Son, VietNam. Organosolv pretreated + extruded.

Filter paper: Whatman n°1, milled

Hard wood paper pulp: from French industrial.

Enzyme

Cellic Ctec2, Novozymes, activity 103FPU/mL at 40°C, pH 4.8

Endo-glucanase: E-CELAN, Megazymes (high

purity) – **G1**

Exo-glucanase: E6412, Sigma – G2

β-glucosidase: 49290, Sigma – **G3**

HTMS BioAsie • Page 6

Experiment setup

From raw data to interpreted data

Measurement	Raw data	Interpreted data	
In-situ Torque	M=f(t)	Viscosity, rheological behavior	
In-situ Chord Length	En(cl), N(cl)=f(t)	Ev, Fv, En, Fn, dSE	
Ex-situ rheology	G', G"	Viscosity, yield stress	
DLS	Ev(dSE), d[4,3]	Ev(dSE), Fv(dSE), d[4,3]	
Morphologi	Particle sharpe & size	Ev(dCE), Particle sharpe & size	
Decantation kinetic	Settling velocity		
HPLC	Mono to di- saccharides	Hydrolysis yield	

HTMS BioAsie

Page 8

Working diagram

HTMS BioAsie

Page 9

Working diagram

HTMS BioAsie● Page 10

Substrate properties - FP

Suspension viscosity at different mixing rate

Substrate: filter paper

HTMS BioAsie

Page 13

Substrate properties - FP

Suspension viscosity at different mixing rate

Substrate: filter paper

Suspension viscosity decreased as the mixing rate increased -> shear-thinning properties

HTMS BioAsie• Page 14

Substrate properties – SCB and PP

Suspension viscosity at different mixing rate

Substrate: filter paper

Suspension viscosity decreased as the mixing rate increased -> shear-thinning properties

Similar behavior on **sugarcane bagasse** ...

HTMS BioAsie• Page 15

Substrate properties – SCB and PP

Suspension viscosity at different mixing rate

Substrate: filter paper

Suspension viscosity decreased as the mixing rate increased -> shear-thinning properties

Similar behavior on sugarcane bagasse ... and on paper pulp

HTMS BioAsie● Page 16

Substrate properties

Viscosity at 100 rpm of SCB, FP and PP suspensions in relation with **biomass concentration**

Substrate properties

Viscosity at 100 rpm of SCB, FP and PP suspensions in relation with **biomass concentration**

Viscosity rise as biomass concentration increased

Substrate properties

Viscosity at 100 rpm of SCB, FP and PP suspensions in relation with **biomass concentration**

Viscosity rise as biomass concentration increased

Identification of substrate's **critical concentration**

Substrate properties

Viscosity at 100 rpm of SCB, FP and PP suspensions in relation with **biomass concentration**

Viscosity rise as biomass concentration increased

Message 1

- All studied suspension behaved as shear-thinning fluid.
- Suspension viscosity = f(solid loading).
- Identification of critical concentration points.

HTMS BioAsie

Page 20

Experiment setup – batch process

Hydrolysis parameters

-Mixing speed:

100 rpm for 28 min

125 rpm for 1 min

speed-down to 100 rpm

repeat until the end

-pH: 4,8

-Temperature: 40°C

-Substrate: 1,5-3% w/v

Enzyme dosage

	CTec2-0.3	G1	G2+G3	G1+G2+G3
FPU	0.30	/	/	
CMCU	2.42	2.42	/	2.42
AVCU	0.30	/	3.00	3.00
CBU	10.95	/	0.50	0.50

Sampling at 0-1-2-3-6-12-18-24h

HTMS BioAsie● Page 22

Pure activities contribution for liquefaction

Filter paper 15gdm/L

Mixing rate 100rpm
Ref: no enzyme **G2+G3** (exo-glucanase & β-glucosidase) = **no contribution**

Pure activities contribution for liquefaction

Filter paper 15gdm/L

Mixing rate 100rpm
Ref: no enzyme **G2+G3** (exo-glucanase & β-glucosidase) = **no contribution**

Pure activities contribution for liquefaction

Filter paper 15gdm/L

Mixing rate 100rpm
Ref: no enzyme **G2+G3** (exo-glucanase & β-glucosidase) = **no contribution.**

G1 (endo-glucanase) = predominant role.

Pure activities contribution for liquefaction

Filter paper 15gdm/L

Mixing rate 100rpm
Ref: no enzyme **G2+G3** (exo-glucanase & β-glucosidase) = **no contribution.**

G1 (endo-glucanase) = predominant role.

CTec2 = better performance! Enzyme synergist?.

Pure activities contribution for liquefaction

Filter paper 15gdm/L

Conclusions on filter paper:

- Liquefaction: G2+G3=almost no effect, G1=predominant role.
- G1+G2+G3 no synergy observed
- Ctec2 showed better performance. Hypothesis on enzyme synergist ???

Question: how enzymes act on complex lignocellulosic suspension?

HTMS BioAsie

Page 27

Results on hard wood paper pulp

Paper pulp 30gdm/L
Mixing rate 100rpm
Ref: no enzyme
G2+G3 (exo-glucanase & β-glucosidase) = no contribution.

HTMS BioAsie● Page 28

Results on hard wood paper pulp

Paper pulp 30gdm/L
Mixing rate 100rpm
Ref: no enzyme
G2+G3 (exo-glucanase & β-glucosidase) = no contribution.

G1 (endo-glucanase) = **34.1%** reduction in μ .

Results on hard wood paper pulp

Paper pulp 30gdm/L
Mixing rate 100rpm
Ref: no enzyme
G2+G3 (exo-glucanase & β-glucosidase) = no contribution.

G1 (endo-glucanase) = **34.1%** reduction in μ .

Enzyme synergyof **G1+G2+G3 51.2%** reduction in μ = 1.5fold increase vs **G1** alone.

Results on hard wood paper pulp

Paper pulp 30gdm/L
Mixing rate 100rpm
Ref: no enzyme **G2+G3** (exo-glucanase & β-glucosidase) = **no contribution.**

G1 (endo-glucanase) = **34.1%** reduction in μ .

Enzyme synergy of **G1+G2+G3 51.2%** reduction in μ = 1.5fold increase vs **G1** alone.

Ctec2 >> **G1+G2+G3 73.2%** reduction in μ .

HTMS BioAsie

Page 31

Results on hard wood paper pulp

Paper pulp 30gdm/L
Mixing rate 100rpm
Ref: no enzyme **G2+G3** (exo-glucanase & β-glucosidase) = **no contribution.**

G1 (endo-glucanase) = **20.6%** reduction in μ .

Conclusions paper pulp

- 1. G2+G3 = no effect, G1 = predominant
- 2. Synergy observed on G1+G2+G3.
- 3. Ctec2 = stronger liquefaction efficiency. It is likely explained by higher activities content of exo-glucanase and β -glucosidase.

HTMS BioAsie • Page 32

Results on sugarcane bagasse

Sugarcane bagasse 30gdm/L
Mixing rate 100rpm
Ref: no enzyme
G2+G3 (exo-glucanase & β-glucosidase) = gradual rise in viscosity.

Results on sugarcane bagasse

Sugarcane bagasse 30gdm/L
Mixing rate 100rpm
Ref: no enzyme
G2+G3 (exo-glucanase & β-glucosidase) = small
contribution.

G1 (endo-glucanase) = **rise** of suspension viscosity in the first 3h.

Results on sugarcane bagasse

Sugarcane bagasse 30gdm/L
Mixing rate 100rpm
Ref: no enzyme
G2+G3 (exo-glucanase & β-glucosidase) = small
contribution.

G1 (endo-glucanase) = **rise** of suspension viscosity in the first 3h.

G1+G2+G3 similar viscosity pattern with either **G1** alone or **Ctec2**.

HTMS BioAsie• Page 35

Results on sugarcane bagasse

Sugarcane bagasse 30gdm/L
Mixing rate 100rpm
Ref: no enzyme
G2+G3 (exo-glucanase & β-glucosidase) = small
contribution.

G1 (endo-glucanase) = **rise** of suspension viscosity in the first 3h.

G1+G2+G3 similar viscosity pattern with either **G1** alone or **Ctec2**.

HTMS BioAsie• Page 36

Results on sugarcane bagasse

Sugarcane bagasse 30gdm/L Mixing rate 100rpm Ref: no enzyme **G2+G3** (exo-glucanase & βglucosidase) = small contribution.

Message 2:

- Expected results:
 - G1=predominant role, G2+G3=minor contribution.
 - Synergy between G1, G2 and G3 → liquefaction efficiency.
- **Original insight:**
 - Swelling step of sugarcane bagasse Mechanism???

Swelling of SCB suspension

SCB 30gdm/L
Mixing rate 100rpm

No rise in viscosity observed at high enzyme loading (25FPU/gC)

Same level of increase in viscosity with 0.3 & 3 FPU/gC

Swelling of SCB suspension

SCB 30gdm/L Mixing rate 100rpm

No rise in viscosity observed at high enzyme loading (25FPU/gC)

Same level of increase in viscosity with 0.3 & 3 FPU/gC

From literature:

H1: ↑[s] lead to ↑viscosity (Fan et al., 2003; T.C. Nguyen et al. 2013, this work)

×

H2: ↑particle size lead to ↑viscosity (Dasari and Berson 2007)

Swelling of SCB suspension

Data from Morphology

At 0h:

- Considerable number of agglomerates.
- Mean dCE=**12.98**±1.34µm

Observation mode: top light, dilution 20, area 1x1cm².

Swelling of SCB suspension

Data from Morphology

At 0h:

- Considerable number of agglomerates.
- Mean dCE=**12.98**±1.34µm

At 1h:

- Few agglomerates, several individuals particles.
- Mean dCE=**18.76** µm

Increase in mean dCE
Disappear of
agglomerates

Swelling of SCB suspension

Data from DLS

dSE = diameter of sphere equivalent.

Swelling of SCB suspension

Data from DLS

dSE = diameter of sphere equivalent.

Swelling of SCB suspension

dSE = diameter of sphere equivalent.

Data from DLS

Solubilization of fine population.

Swelling of SCB suspension

Phenomenon observed: rise in viscosity

Hypothesis 2

Analysis results

Cellulose to glucose conversion 3.45±0.45%

→ Negligible variation of [S]

DLS + Morpho: increase in particle size

Swelling of SCB suspension

- Solubilization of fine population.
- Increase in particle mean diameter
- Particles were separated from agglomerates

Message 3

- Swelling step on SCB suspension = evolution of population from fine to coarse
- Obtained results are not enough to reveal its mechanism.

HTMS BioAsie•

Research STRATEGY

Experiment overview: from raw to interpreted data

- Substrate was feed at constant rate Qs (g/h)
- Enzyme was feed with substrate at fixed ratio Qe/Qs=const

Experiment overview: from raw to interpreted data

- Substrate was feed at constant rate Qs (g/h)
- Enzyme was feed with substrate at fixed ratio Qe/Qs=const
- Torque values were recorded every 1min

Experiment overview: from raw to interpreted data

- Substrate was feed at constant rate Qs (g/h)
- Enzyme was feed with substrate at fixed ratio Qe/Qs=const
- Torque values were recorded every 1min
- Periodically, samples were taken for analysis of dry matter content

Experiment overview: from raw to interpreted data

- Substrate was feed at constant rate Qs (g/h)
- Enzyme was feed with substrate at fixed ratio Qe/Qs=const
- Torque values were recorded every 1min
- Periodically, samples were taken for analysis of dry matter content and glucose

Mechanism of liquefaction

Final [SCB] **140** gdm/L Qs = **23.3** gdm/h Enzyme: **25**FPU/g cellulose **Phase feeding**

Substrate solubilization

Fiber modification

Mechanism of liquefaction

Final [SCB] **140** gdm/L Qs = **23.3** gdm/h Enzyme: **25**FPU/g cellulose **Phase feeding**

Substrate solubilization

Fiber modification

Mechanism of liquefaction

Final [SCB] = **140** gdm/L Qs = **23.3** gdm/h Enzyme: **25**FPU/g cellulose

Phase feeding

Substrate solubilization

Fiber modification

Mechanism of liquefaction

Drastic fall in viscosity

From **A** to **B**: big particles were broken down into smaller particles.

From **B** to **C**: solubilization of small particles

End of feeding
Final [SCB] = **140** gdm/L
Enzyme: **25**FPU/g cellulose

Mechanism of liquefaction

End of feeding
Final [SCB] = **140** gdm/L
Enzyme: **25**FPU/g cellulose

—19:28:09 (25) —31:53:21 (25) —70:40:56 (25)

Conclusion 4

- Enzyme reduces suspension viscosity by two mechanisms: modification of fiber and solubilization of substrate.
- Suspension viscosity was strongly depend on big particles → key to efficient liquefaction.

Chord Length [µm]

Relationship between physical and biochemical results

Paper pulp 30gdm/L

Pure activities contribution for liquefaction

Paper pulp 30gdm/L

Conclusions

- 1. Endo-glucanase = main enzymes in the liquefaction of lignocellulosic suspension.
- 2. Exo-glucanase and β -glucosidase can improve liquefaction efficiency by synergist with Endo-glucanase.
- 3. The reduction of suspension viscosity is related to two phenomena:
 - i. Fiber modification,
 - ii. Solubilization of substrate.
- 4. The viscosity rising step on pretreated sugarcane bagasse is occurred with an evolution of population from fine to coarse. Its mechanism need to be investigated through alternatives experiments and analysis.

Thank for attention!

